Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Antibodies (Basel) ; 13(2)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38651409

ABSTRACT

Aflibercept is a therapeutic recombinant fusion protein comprising extracellular domains of human vascular endothelial growth factor receptors (VEGFRs) and IgG1-Fc. It is a highly glycosylated protein with five N-glycosylation sites that might impact it structurally and/or functionally. Aflibercept is produced in mammalian cells and exhibits large glycan heterogeneity, which hampers glycan-associated investigations. Here, we report the expression of aflibercept in a plant-based system with targeted N-glycosylation profiles. Nicotiana benthamiana-based glycoengineering resulted in the production of aflibercept variants carrying designed carbohydrates, namely, N-glycans with terminal GlcNAc and sialic acid residues, herein referred to as AFLIGnGn and AFLISia, respectively. Both variants were transiently expressed in unusually high amounts (2 g/kg fresh leaf material) in leaves and properly assembled to dimers. Mass spectrometric site-specific glycosylation analyses of purified aflibercept showed the presence of two to four glycoforms in a consistent manner. We also demonstrate incomplete occupancy of some glycosites. Both AFLIGnGn and AFLISia displayed similar binding potency to VEGF165, with a tendency of lower binding to variants with increased sialylation. Collectively, we show the expression of functionally active aflibercept in significant amounts with controlled glycosylation. The results provide the basis for further studies in order to generate optimized products in the best-case scenario.

2.
Biotechnol J ; 19(1): e2300323, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37804142

ABSTRACT

Control over glycosylation is an important quality parameter in recombinant protein production. Here, we demonstrate the generation of a marker-free genome edited Nicotiana benthamiana N-glycosylation mutant (NbXF-KO) carrying inactivated ß1,2-xylosyltransferase and α1,3-fucosyltransferase genes. The knockout of seven genes and their stable inheritance was confirmed by DNA sequencing. Mass spectrometric analyses showed the synthesis of N-glycans devoid of plant-specific ß1,2-xylose and core α 1,3-fucose on endogenous proteins and a series of recombinantly expressed glycoproteins with different complexities. Further transient glycan engineering towards more diverse human-type N-glycans resulted in the production of recombinant proteins decorated with ß1,4-galactosylated and α2,6-sialylated structures, respectively. Notably, a monoclonal antibody expressed in the NbXF-KO displayed glycosylation-dependent activities. Collectively, the engineered plants grow normally and are well suited for upscaling, thereby meeting industrial and regulatory requirements for the production of high-quality therapeutic proteins.


Subject(s)
Glycoproteins , UDP Xylose-Protein Xylosyltransferase , Humans , Glycosylation , Recombinant Proteins/metabolism , Glycoproteins/genetics , Polysaccharides/chemistry , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
3.
Front Bioeng Biotechnol ; 11: 1320586, 2023.
Article in English | MEDLINE | ID: mdl-38125307

ABSTRACT

Plants are being increasingly recognized for the production of complex human proteins, including monoclonal antibodies (mAbs). Various methods have been applied to boost recombinant expression, with DNA codon usage being an important approach. Here, we transiently expressed three complex human mAbs in Nicotiana benthamiana, namely one IgG3 and two IgM directed against SARS-CoV-2 as codon optimized(CO) and non-codon optimized (NCO) variants. qRT-PCR exhibited significantly increased mRNA levels of all CO variants compared to the non-codon optimized orthologues, in line with increased protein expression. Purified CO and NCO mAbs did not exhibit obvious biochemical differences, as determined by SDS-PAGE and antigen binding activities. By contrast, enhanced production selectively impacts on glycosite occupancy and N-glycan processing, with increased mannosidic structures. The results point to a careful monitoring of recombinant proteins upon enhancing expression. Especially if it comes to therapeutic application even subtle modifications might alter product efficacy or increase immunogenicity.

4.
Front Plant Sci ; 14: 1275228, 2023.
Article in English | MEDLINE | ID: mdl-37868317

ABSTRACT

Subunit vaccines based on recombinant viral antigens are valuable interventions to fight existing and evolving viruses and can be produced at large-scale in plant-based expression systems. The recombinant viral antigens are often derived from glycosylated envelope proteins of the virus and glycosylation plays an important role for the immunogenicity by shielding protein epitopes. The receptor-binding domain (RBD) of the SARS-CoV-2 spike is a principal target for vaccine development and has been produced in plants, but the yields of recombinant RBD variants were low and the role of the N-glycosylation in RBD from different SARS-CoV-2 variants of concern is less studied. Here, we investigated the expression and glycosylation of six different RBD variants transiently expressed in leaves of Nicotiana benthamiana. All of the purified RBD variants were functional in terms of receptor binding and displayed almost full N-glycan occupancy at both glycosylation sites with predominately complex N-glycans. Despite the high structural sequence conservation of the RBD variants, we detected a variation in yield which can be attributed to lower expression and differences in unintentional proteolytic processing of the C-terminal polyhistidine tag used for purification. Glycoengineering towards a human-type complex N-glycan profile with core α1,6-fucose, showed that the reactivity of the neutralizing antibody S309 differs depending on the N-glycan profile and the RBD variant.

6.
Front Immunol ; 14: 1147960, 2023.
Article in English | MEDLINE | ID: mdl-37359564

ABSTRACT

Immunoglobulin M (IgM) is the largest antibody isotype with unique features like extensive glycosylation and oligomerization. Major hurdles in characterizing its properties are difficulties in the production of well-defined multimers. Here we report the expression of two SARS-CoV-2 neutralizing monoclonal antibodies in glycoengineered plants. Isotype switch from IgG1 to IgM resulted in the production of IgMs, composed of 21 human protein subunits correctly assembled into pentamers. All four recombinant monoclonal antibodies carried a highly reproducible human-type N-glycosylation profile, with a single dominant N-glycan species at each glycosite. Both pentameric IgMs exhibited increased antigen binding and virus neutralization potency, up to 390-fold, compared to the parental IgG1. Collectively, the results may impact on the future design of vaccines, diagnostics and antibody-based therapies and emphasize the versatile use of plants for the expression of highly complex human proteins with targeted posttranslational modifications.


Subject(s)
COVID-19 , Immunoglobulin G , Humans , Immunoglobulin G/genetics , SARS-CoV-2/genetics , Antibodies, Viral , Immunoglobulin M/genetics , Immunoglobulin M/chemistry , Antibodies, Monoclonal , Recombinant Proteins/genetics
8.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Article in English | MEDLINE | ID: mdl-34702738

ABSTRACT

Here, we expressed two neutralizing monoclonal antibodies (Abs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; H4 and B38) in three formats: IgG1, IgA1 monomers (m), and IgA1 dimers (d) in glycoengineered Nicotiana benthamiana plants. All six Ab variants assembled properly and exhibited a largely homogeneous glycosylation profile. Despite modest variation in antigen binding between Ab formats, SARS-CoV-2 neutralization (NT) potency significantly increased in the following manner: IgG1 < IgA1-m < IgA1-d, with an up to 240-fold NT increase of dimers compared to corresponding monomers. Our results underscore that both IgA's structural features and multivalency positively impact NT potency. In addition, they emphasize the versatile use of plants for the rapid expression of complex human proteins.


Subject(s)
Antibodies, Monoclonal/chemistry , COVID-19/virology , Immunoglobulin A/chemistry , Immunoglobulin G/chemistry , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Chlorocebus aethiops , Enzyme-Linked Immunosorbent Assay , Humans , Neutralization Tests , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
9.
Proc Natl Acad Sci U S A ; 118(42)2021 10 01.
Article in English | MEDLINE | ID: mdl-34599091

ABSTRACT

Monoclonal antibodies (mAbs) that efficiently neutralize SARS-CoV-2 have been developed at an unprecedented speed. Notwithstanding, there is a vague understanding of the various Ab functions induced beyond antigen binding by the heavy-chain constant domain. To explore the diverse roles of Abs in SARS-CoV-2 immunity, we expressed a SARS-CoV-2 spike protein (SP) binding mAb (H4) in the four IgG subclasses present in human serum (IgG1-4) using glyco-engineered Nicotiana benthamiana plants. All four subclasses, carrying the identical antigen-binding site, were fully assembled in planta and exhibited a largely homogeneous xylose- and fucose-free glycosylation profile. The Ab variants ligated to the SP with an up to fivefold increased binding activity of IgG3. Furthermore, all H4 subtypes were able to neutralize SARS-CoV-2. However, H4-IgG3 exhibited an up to 50-fold superior neutralization potency compared with the other subclasses. Our data point to a strong protective effect of IgG3 Abs in SARS-CoV-2 infection and suggest that superior neutralization might be a consequence of cross-linking the SP on the viral surface. This should be considered in therapy and vaccine development. In addition, we underscore the versatile use of plants for the rapid expression of complex proteins in emergency cases.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal/biosynthesis , Glycosylation , Humans , Neutralization Tests , Recombinant Proteins/biosynthesis
10.
Front Plant Sci ; 12: 671728, 2021.
Article in English | MEDLINE | ID: mdl-34305971

ABSTRACT

The potential therapeutic value of many proteins is ultimately limited by their rapid in vivo clearance. One strategy to limit clearance by metabolism and excretion, and improving the stability of therapeutic proteins, is their fusion to the immunoglobulin fragment crystallizable region (Fc). The Fc region plays multiple roles in (i) dimerization for the formation of "Y"-shaped structure of Ig, (ii) Fc-mediated effector functions, (iii) extension of serum half-life, and (iv) a cost-effective purification tag. Plants and in particular Nicotiana benthamiana have proven to be suitable expression platforms for several recombinant therapeutic proteins. Despite the enormous success of their use for the production of full-length monoclonal antibodies, the expression of Fc-fused therapeutic proteins in plants has shown limitations. Many Fc-fusion proteins expressed in plants show different degrees of instability resulting in high amounts of Fc-derived degradation products. To address this issue, we used erythropoietin (EPO) as a reporter protein and evaluated the efforts to enhance the expression of full-length EPO-Fc targeted to the apoplast of N. benthamiana. Our results show that the instability of the fusion protein is independent from the Fc origin or IgG subclass and from the peptide sequence used to link the two domains. We also show that a similar instability occurs upon the expression of individual heavy chains of monoclonal antibodies and ScFv-Fc that mimic the "Y"-shape of antibodies but lack the light chain. We propose that in this configuration, steric hindrance between the protein domains leads to physical instability. Indeed, mutations of critical residues located on the Fc dimerization interface allowed the expression of fully stable EPO monomeric Fc-fusion proteins. We discuss the limitations of Fc-fusion technology in N. benthamiana transient expression systems and suggest strategies to optimize the Fc-based scaffolds on their folding and aggregation resistance in order to improve the stability.

11.
Article in English | MEDLINE | ID: mdl-32793574

ABSTRACT

IgG, the main serum immunoglobulin isotype, exists in four subclasses which selectively appear with distinctive glycosylation profiles. However, very little is known about the biological consequences mainly due to the difficulties in the generation of distinct IgG subtypes with targeted glycosylation. Here, we show a comprehensive expression and glycan modulation profiling of IgG variants in planta that are identical in their antigen binding domain but differ in their subclass appearance. While IgG1, 2, and 4 exhibit similar expression levels and purification yields, IgG3 is generated only at low levels due to the in planta degradation of the heavy chain. All IgG subtypes are produced with four distinct N-glycosylation profiles, differing in sugar residues previously shown to impact IgG activities, i.e., galactosylation, sialylation and core fucosylation. Affinity purified IgG variants are shown to be fully assembled to heterodimers but display different biochemical/physical features. All subtypes are equally well amenable to targeted glycosylation, except sialylated IgG4 which frequently accumulates substantial fractions of unusual oligo-mannosidic structures. IgG variants show significant differences in aggregate formation and endotoxin contamination which are eliminated by additional polishing steps (size exclusion chromatography, endotoxin removal treatments). Collectively we demonstrate the generation of 16 IgG variants at high purity and large glycan homogeneity which constitute an excellent toolbox to further study the biological impact of the two main Fc features, subclass and glycosylation.

12.
Int J Biol Macromol ; 157: 158-169, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32348856

ABSTRACT

Plant-based expression system has many potential advantages to produce biopharmaceuticals, but plants cannot be directly used to express human glycoproteins because of their differences in glycosylation abilities from mammals. To exploit plant-based expression system for producing recombinant human erythropoietin (rhuEPO), we glycoengineered tobacco plants by stably introducing seven to eight mammalian genes including a target human EPO into tobacco in order to generate capacities for ß1,4-galactosylation, bisecting N-acetylglucosamine (GlcNAc) and sialylation. Wild type human ß1,4-galactosyltransferase gene (GalT) or a chimeric GalT gene (ST/GalT) was co-expressed to produce rhuEPO bearing ß1,4-galactose-extended N-glycan chains as well as compare their ß1,4-galactosylation efficiencies. Five mammalian genes encoding enzymes/transporter for sialic acid biosynthesis, transport and transfer were co-expressed to build sialylation capacity in plants. The human MGAT3 was co-expressed to produce N-glycan chains with bisecting GlcNAc. Our results demonstrated that the above transgenes were incorporated into tobacco genome and transcribed. ST/GalT was found to be more efficient than GalT for ß1,4-galactosylation. Furthermore, co-expressing MGAT3 generated N-glycans likely bearing bisected GlcNAc. However, our current efforts did not result in generating sialylation capacity. Created transgenic plants expressing EPO and ST/GalT could be used to produce rhuEPO with high proportion of ß1,4-galactose-extended N-glycan chains for tissue protective purposes.


Subject(s)
Erythropoietin/chemistry , Erythropoietin/genetics , Genetic Engineering , Nicotiana/genetics , Polysaccharides/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Gene Expression , Genome, Plant/genetics , Glycosylation , Humans , Nicotiana/metabolism
13.
Plant Biotechnol J ; 18(1): 266-273, 2020 01.
Article in English | MEDLINE | ID: mdl-31207008

ABSTRACT

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus, and its infection can cause long-term debilitating arthritis in humans. Currently, there are no licensed vaccines or therapeutics for human use to combat CHIKV infections. In this study, we explored the feasibility of using an anti-CHIKV monoclonal antibody (mAb) produced in wild-type (WT) and glycoengineered (∆XFT) Nicotiana benthamiana plants in treating CHIKV infection in a mouse model. CHIKV mAb was efficiently expressed and assembled in plant leaves and enriched to homogeneity by a simple purification scheme. While mAb produced in ∆XFT carried a single N-glycan species at the Fc domain, namely GnGn structures, WT produced mAb exhibited a mixture of N-glycans including the typical plant GnGnXF3 glycans, accompanied by incompletely processed and oligomannosidic structures. Both WT and ∆XFT plant-produced mAbs demonstrated potent in vitro neutralization activity against CHIKV. Notably, both mAb glycoforms showed in vivo efficacy in a mouse model, with a slight increased efficacy by the ∆XFT-produced mAbs. This is the first report of the efficacy of plant-produced mAbs against CHIKV, which demonstrates the ability of using plants as an effective platform for production of functionally active CHIKV mAbs and implies optimization of in vivo activity by controlling Fc glycosylation.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Antibodies, Viral/biosynthesis , Chikungunya Fever/therapy , Nicotiana/metabolism , Animals , Chikungunya virus , Mice , Plants, Genetically Modified
14.
Biotechnol J ; 13(1)2018 Jan.
Article in English | MEDLINE | ID: mdl-28755501

ABSTRACT

Glyco-modulation of therapeutic proteins produced in plants has shown great success. Plant-based expression platforms for tailored human-like N-glycosylation are based on the overexpression of foreign genes. However, drawbacks such as protein miss targeting, interference with endogenous glycosyltransferases, or with plant development hamper the widespread use of the technology. Here a technique that facilitates the generation of recombinant proteins with targeted N-glycosylation at high homogeneity is described. It is focused on the synthesis of human-type ß1,4-galactosylation by the overexpression of the human ß1,4-galactosyltransferase (GalT) in Nicotiana benthamiana. A GalT construct that targets the enzyme to the required late Golgi compartment (ST GalT) is transiently co-expressed with two pharmaceutically relevant glycoproteins. The impact of eight promoters driving the expression of ST GalT is evaluated by mass spectrometry (MS) -based analyses. It is shown that five promoters (amongst them high expressors) induce aberrant non-human glycosylation. In contrast, three promoters, considered as moderately active, regulate gene expression to levels leading to an improved efficiency of di-galactosylation (and subsequent sialylation) on the reporter proteins. The results point to the importance of promoter choice for optimizing glycan engineering processes.


Subject(s)
Genetic Engineering/methods , Glycoproteins/genetics , Promoter Regions, Genetic , Recombinant Proteins/genetics , Humans , Plants, Genetically Modified/genetics , Nicotiana/genetics
15.
Proc Natl Acad Sci U S A ; 113(34): 9498-503, 2016 Aug 23.
Article in English | MEDLINE | ID: mdl-27444013

ABSTRACT

Sialic acids (Sias) are abundant terminal modifications of protein-linked glycans. A unique feature of Sia, compared with other monosaccharides, is the formation of linear homo-polymers, with its most complex form polysialic acid (polySia). Sia and polySia mediate diverse biological functions and have great potential for therapeutic use. However, technological hurdles in producing defined protein sialylation due to the enormous structural diversity render their precise investigation a challenge. Here, we describe a plant-based expression platform that enables the controlled in vivo synthesis of sialylated structures with different interlinkages and degree of polymerization (DP). The approach relies on a combination of stably transformed plants with transient expression modules. By the introduction of multigene vectors carrying the human sialylation pathway into glycosylation-destructed mutants, transgenic plants that sialylate glycoproteins in α2,6- or α2,3-linkage were generated. Moreover, by the transient coexpression of human α2,8-polysialyltransferases, polySia structures with a DP >40 were synthesized in these plants. Importantly, plant-derived polySia are functionally active, as demonstrated by a cell-based cytotoxicity assay and inhibition of microglia activation. This pathway engineering approach enables experimental investigations of defined sialylation and facilitates a rational design of glycan structures with optimized biotechnological functions.

16.
Hum Antibodies ; 23(3-4): 45-8, 2015 Dec 23.
Article in English | MEDLINE | ID: mdl-27472861

ABSTRACT

Human immunoglobulins circulate as highly heterogeneously glycosylated mixture of otherwise homogeneous protein backbones. A series of studies, mainly on IgG, have unequivocally proven that antibodies modulate their effector function through sugars present in the Fc domain. However, our limited technology in producing complex proteins such as antibodies, with defined glycan structures hamper in depths studies. This review introduces a plant based expression platform enabling engineering of antibody glycans. The procedure is based on the simultaneous delivery of appropriate constructs, carrying cDNAs of target proteins (e.g. heavy and light chain of antibodies) in combination with human glycosylation enzymes into plant leaves. Harvesting of recombinant proteins one week post construct delivery allows high speed and flexibility. Major achievements include the production of functional active slialylated pentameric IgMs in tobacco leaves. The system provides a viable approach to the generation of antibodies with defined glycoforms on demand, contributing to studies on antibody glycans and the development of novel antibody based drugs.


Subject(s)
Antibodies, Monoclonal/metabolism , Immunoglobulin Fc Fragments/biosynthesis , Immunoglobulin G/biosynthesis , Immunoglobulin M/biosynthesis , Nicotiana/genetics , Protein Engineering/methods , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/isolation & purification , Carbohydrate Conformation , Carbohydrate Sequence , DNA, Complementary/genetics , DNA, Complementary/immunology , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glycosylation , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/isolation & purification , Immunoglobulin G/genetics , Immunoglobulin G/isolation & purification , Immunoglobulin M/genetics , Immunoglobulin M/isolation & purification , Plant Leaves/genetics , Plant Leaves/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Nicotiana/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...